详细介绍: FXJ-200水力旋流器选型方法线,本实验采根据实验结果,对于实验用水力旋流器可以得到以下结论:(1)水力旋流器的人口流量一压降关系是唯一的,可以用乙P一a吼的型式来拟合;水力旋流器的分流比一压降比的关系为非线性,为分流比的的自控系统设计提供了依据。(2)研究了水力旋流器粒级效率的测试方法,得到了实验用水力旋流器的粒级效率曲线。106摘要研究了进口平均粒径与分离效率之间的关系、不同流量时旋流器各部位的平均粒径、分流比与旋流器各柱直径随溢流口直径的变化不大,而主要与压力降有关,随压力降的增大而增大。(1)传统型(大气排放式)水力旋流器的空气柱直径随压力降或进料流量的增加而增加,在压力降较小时,空气柱直径增加很快,随后变化渐缓,当压力降继续增加时,空气柱直径趋向一定值。对于同样结构的水封式水力旋流器,在试验范围内,空气柱直径一直随压力降的增加而增加,没有趋向稳定的趋势。(2)大气排放式水力旋流器空气柱直径与溢流口直径呈近(以使底流中固相体积浓度不要超过12%,且越低越好),进口压力高;对其结构参数的要求是:旋流器直径小(直径下限以固相颗粒在旋流器中不堵塞为准,为防止大块物料的堵塞,可以在旋流器进料之前加滤网;处理量大时可用并联小旋流器组),进料口和溢流口尺寸较小。水力旋流器处理大部分固相颗粒时其分离粒度范围为2~250μm。如果单级旋流器操作仍不能达到澄清要求,可以采用多级串联或混联旋流器组。浓缩的目的是为了获得FXJ-200水力旋流器选型方法流器、螺杆泵、旋涡泵、计量泵、静态混合器、电磁流量计、等动量取样器、边壁取样器等设备组成。试验时,在除油旋流器的大锥段中部、小锥段头部、小锥段中部、直管段头部及中部均设有取样孔,取样孔与压力缓冲取样装置相连,用以获得沿轴线方向旋流器器壁的样品。在旋流器的进口和底流口处,除了对浓度和压力等进行测量外,还采用等动量取样装置获取进出口的粒径试样。试验中用到的设备还有测量粒径的CILAS粒度分析了/类绳扁平状0的空气核。因此,过去研究认为空气核的形状是/柱状、麻花状、正弦状0等形状都是不全面的。从这里可以看出,空气核的形状是随着流量的不同而发生变化的。对于20b锥角旋流器稳态时空气核的形状特征而言,当流量较大时,空气核在锥体中部".范围内出现扭曲现象比较明显,且底部弯曲严重,但在整个长度范围内的直径尺寸变化较小;当流量较小时,空气核扭曲虽然不明显,但在柱锥交界处出现了明显的弯曲现象,且提早发生离心分离作用。溢流管由直筒式改为异径管,曲面扩张管、厚壁管或带螺旋沟形的,以减小在环形区内的局部环流湍动,节约能耗。为了获得纯净的沉砂,在沉砂口上方切线方向注入清洗水。在个别情况下,为了获得高浓度沉砂,而又不堵塞沉砂口,加设了螺杆强制排料装置。为了消除空气柱的不利影响,而在旋流器中心插入一固体棒,或在底部加设水封装置。在旋流器的整体型式方面变种也很多,如双溢流管的三产品旋流器、溢佳工作状态,是采用呈夹角并能有效排出的沉砂口直径当处理的矿石时,不同排矿浓度下的沉砂口直径与沉砂能力的关系见图设计过程中,可以根据矿石密度要求的沉砂体积浓度和相应的沉砂能力,由图查得所需的沉砂口直径,或按选定的沉砂口直径核定其沉砂能力澄清的目的是为了获得清洁的溢流,或者也可以说是为了程度地回收进料中的固相物。水力旋流器进行澄清作业时,对其操作参数的要求是:进料浓度低,底流口较大这需要牺牲较高进口压力为代价。动流器进口流体中油的浓度得到控制,且该油的控制浓度与从大沉淀罐出口流体中油的浓度无关。该系统装备了压力传感器和涡轮流量计,以检测压力和流量。而压力传感器和涡轮流量计与数据记录仪相连接,能够实时数值记录。动态水力旋流器的旋转速度由手持转速表测取。现场试验流体性质油田使用现场生产的AIP290(0.559/em,)的原油试验。在水力旋流器试验方案中所用生产水的温度大约是n4FXJ-200水力旋流器选型方法析的。总之,固体颗粒在水力旋流器内的不同区域有其不同的运动特征,对这些特征的描述,即使可能的话,也大多处在定性阶段,而定量表述却很难进行。颗粒与液流的运动跟随性水力旋流器中的固体颗粒与液流运动的跟随性与流动方向(切向、轴向与径向)、颗粒性质(大小、密度)、流体性质(密度、粘度)、空间位置(流动半径)、湍流频率以及流体的切向速度与径向速度之比等一系列参数有关。在旋流器的切向与轴向速度准自由涡参数n随所测量截面和所测位置不同而变化,在导叶式液-液旋流器主分离区域内,n值为0130~0156。(3)轴向零速过渡区内临界面为圆柱形面,外临界面是一个柱锥联合面;轴向零过渡区的锥角为3b,略大于水力旋流器锥段部分的半锥角。导叶式液-液旋流器内独特的轴向速度分布特征主要是由于其特有的结构和工作时的操作参数所造成的。旋流器的顶部和底部分别是溢流口和底流口,液体在进入水力旋流器后将分别从这2得到的旋流器内部一个特定位置的周向速度沿半径的分布来进行阐述水力旋流器流体流动的稳定性。由图3可知,尽管大部分区域里环量的平方随着半径的增大而增大,但在边壁附近的区域,却出现了环量的平方随半径的增大而减小的情况,此时根据瑞利判据可以判定流体在水力旋流器内部的流动是不稳定的。这种不稳定性,将不利于水力旋流器分离过程的进行,限制水力旋流器的分离效率。因此水力旋流器的改进和完善,就需要围绕减FXJ-200水力旋流器选型方法万小时,其中大部分仍可继续使用。沉砂口寿命约200小时以上,旋流器的沉砂质量完全可以满足堆坝的要求。同类型功300、价250、功200、价125规格的聚氨酷水力旋流器系列产品在油田钻井泥浆脱粗净化作业中得到广泛应用,效果良好。其耐磨性为高铬铸铁的6倍,为丁睛胶的5一10倍,其质量已达到从美国引进的同类产品水平,完全取代了国外同类产品。除上述规格外,为满足矿山生产的需要,该厂还研制了叻500、叻350、初50、们0
聚氨酯弹性体制作旋流器具有耐腐蚀、抗老化、质量轻等优点,有利于室外及野外作业。在石油钻探作业中,使用旋流器除砂与脱泥,对钻井泥浆净化。旋流器是一个带有圆柱部分的锥形容器。锥体上部内圆锥体部分叫液腔。圆锥体外侧有一进液管,以切线方向和液腔连通
逐步发展成具有高技术含量的分离设备[2]。我国自90年代以来,掀起了对旋流器特别是多相分离旋流器的研究和开发热潮[3]。1 2 旋流器的结构典型的静态旋流器由圆筒和圆锥筒连结而成,包括溢流管、底流管、进料管等主要部件组成(见图1)。悬浮液以较高的速度由进料管沿切线方向进入水力旋流器,由于受到外筒壁的限制,迫使液体做自上而下的旋转运动,通常将这种运动称为外旋流或下降旋流运动。外旋流中的固体颗粒受到离油水乳状液。该油水乳状液经计量泵增压后与离心泵泵送来的清水在静态混合器3中混合均匀,经流t计计量后进人水力旋流器;在水力旋流器中,油水混合液中大部分油和少量的水从水力旋流器溢流口排人溢流罐,处理后的大部分水和微量的油从水力旋流器底流口经流量计计量后排入清水罐。除油旋流器的分离效率有总效率和粒级效率之分。总效率定义为溢流中原油体积流量占来流中原油体积流量的百分数。总效率不能完全表示旋流FXJ-200水力旋流器选型方法 |