联系我们

联系人:张洁(小姐)

联系手机:13716679560

固定电话:59433358

企业邮箱:848155033@qq.com

联系我时,请说是在新型建材网上看到的,谢谢!

今日最新资讯
热门资讯
新型建材网资讯
    德国西力蓄电池12v150ah免费安装
    发布者:hongyu888  发布时间:2017-09-13 10:23:32  访问次数:55

    德国西力蓄电池12v150ah免费安装

    销售电话:13716679560   张洁  

    蓄电池作为一种方便适用的直流电源广泛用于发电厂,工矿企业变配电所和各类机动车。由于在铅酸蓄电池的装配过程中涉及到铅中毒、易燃、易爆等危险特性,因而确保铅酸蓄电池的安全生产十分重要。下面小编给大家介绍一下蓄电池的危害及其防范。
    蓄电池的危害
        铅酸蓄电池装配过程中可能产生的危险、危害主要是中毒、火灾、,以及高温灼烫、机械伤害、腐蚀伤害等。限于篇幅,仅对中毒、火灾和3种因素进行分析。
        称片、包片区,存在着大量的铅尘,属于铅的重污染区,易发生慢性铅中毒。铅中毒对人体的危害主要集中在消化系统和神经系统,在蓄电池厂工作的操作工患职业性慢性铅中毒的比例高达25%~30%。更为严重的是,铅中毒不仅局限在蓄电池厂里的成年操作工铅中毒反应,甚至周边许多儿童也出现了铅中毒的反应。2004年6月,某县曾经发生数百名铅中毒事件。
        引起这些中毒事故的原因主要有厂区内缺乏必要的排风环保设备,有的厂家虽然有,但是工作期间不开启,形同虚设,工人缺少必要的劳保用品以及工人的自我保护意识不强等。称片、包片是引起铅中毒的重点部位,必须有完善的防护措施和排风系统。
        根据工艺要求,焊接区使用的乙炔、液化石油气火灾危险为甲类,氧气火灾危险为乙类。乙炔在空气中的极限为2.1%~80.0%(υ/υ),引燃温度在305℃左右;液化石油在空气中的极限为2.25%~9.65%(υ/υ),引燃熳度在426~537℃左右。因此,生产过程中最大危险因素是火灾和,如果在焊接极群和极柱过程中操作不当,剧烈碰撞或离明火过近,温度太高等都可能引起火灾、。
    根据铅酸蓄电池工作原理,铅酸蓄电正极活性物质是二氧化铅,负极活性物质是海绵铅,电解液是稀硫酸溶液,当充电到70%~80%电量时,正极开始产生氧气,当充电基本完成约90%时,负极开始产生氢气。氢气是易燃易爆的甲类物质,在空气中的极限为4.1%~74.1%,引燃温度在450℃左右,因此充电室内氢气浓度极易达到极限,一遇火源就会生产燃爆。例如,1991年7月3日,某电站铅酸蓄电池室发生燃爆事故,造成1名巡检工死亡,充电设备和蓄电池严重损坏。事故主要原因是该蓄电池通风设备失效,造成室内氢气聚积,而巡检工严重违章在巡检时抽烟,明火引起燃爆。
    德国西力蓄电池12v150ah免费安装


    西力蓄电池安全防范
        上述可知,蓄电池装配过程中存在的主要危害因素为中毒、火灾、等。为确保安全生产建议采取以下安全措施:
        1.厂址选择与周围居民及公共设施保持必要的安全防护距离,同时必须满足《建筑设计防火规范》,《铅作业安全卫生规程》,《工业企业设计卫生标准》和《使用有毒物品作业场所劳动保护条例》的要求。
        2.在作业前尽可能先将操作环境湿润,防止铅尘飞扬;作业时工人除穿戴相应的工作服、防尘口罩外,必须使用能保证新鲜空气供给的通风设施;操作台上清出的铅粉尘,必须放置在专用容器内,不得与其他垃圾等堆放在一起;作业后,工人必须洗澡,并将工作服和防尘口罩在厂内集中洗涤;同时作业场所所应禁止吸烟,饮食等;班中喝水前必须洗手,洗脸及漱口,严禁穿工作服进食堂,出厂。
        3.车间内的气体钢瓶不得随意堆放或不同气体钢瓶混放。虽然乙炔、液化石油气及氧气用最较少,但气体钢瓶仍需单独存放。存放处应在生产车间外墙处用砖墙和预制板砌两间作为石油液化气和氧气的中间仓库,选用下端带百页窗的门,两侧墙留通风口,并安装钢丝网,保持良好的通风。门开在车间外面,并在醒目位置贴上禁止明火和吸烟的标志。根据《建筑设计防火规范》的规定,该存放处只能作为车间中间库房,且乙炔的存放数量不应超过25m3(标准状态下)。液化石油气的存放数量不应超过50m3(标准状态下)。氧气和乙炔的保管和使用要设专人负责,严禁超压使用和人为加热气瓶,严禁用带油污的手套开启氧气瓶阀门;操作人员作业前必须先检查软管与焊接的连接处是否牢固,软管是否有打结处。
    4.充电区应保持良好的通风,必要时应增加防爆型通风设备,同时设置可燃气体浓度检漏报警装置,并达到《火灾自动报警系统设计规范》的相关要求。充电区不准使用不防爆的电器设备(如开关、插座、熔断及灯具等),严禁在充电区吸烟,用明火照明或取暖;不准在室内动火作业。室内各电气线路应穿管敷设,电气连接处应接触良好、牢靠,不得松动,避免产生火花放电。不冷穿化纤服装进入充电区,以免摩擦产生放电。


    德国西力蓄电池12v120ah包括安装


    太阳能电池的工作原理
     
              光伏发电是利用半导体pn结(pn junction)的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池(solar cell)。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件(module),再配合上功率控制器等部件就形成了光伏发电装置。光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设同期短的优点。光伏发电是根据光生伏特效应原理, 当P-N结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子。但能引起光伏效应的只能是本征吸收所激发的少数载流子。因P区产生的光生空穴,N区产生的光生电子属多子,都被势垒阻挡而不能过结。只有P区的光生电子和N区的光生空穴和结区的电子空穴对(少子)扩散到结电场附近时能在内建电场作用下漂移过结。光生电子被拉向N区,光生空穴被拉向P区,即电子空穴对被内建电场分离。这导致在N区边界附近有光生电子积累,在P区边界附近有光生空穴积累。它们产生一个与热平衡P-N结的内建电场方向相反的光生电场,其方向由P区指向N区。此电场使势垒降低,其减小量即光生电势差,P端正,N端负。于是有结电流由P区流向N区,其方向与光电流相反。如果这时分别在P型层和N型层焊上金属导线,接通负载,则外电路便有电流通过,如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。
     
              太阳能电池将太阳光能直接转化为电能。不论是独立使用还是并 网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精 炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。以晶体硅材料制备的太阳能电池主要包括:单晶硅、多晶硅、非晶硅和薄膜电池等。单晶硅电池具有电池转换效率高,稳定性好,但是成本较高;非晶硅太阳电池则具有生产效率高,成本低廉,但是转换效率较低,而且效率衰减得比较厉害;铸造多晶硅太阳能电池则具有稳定得转换的效率,而且性能价格比最高;薄膜晶体硅太阳能电池则还只能处在研发阶段。铸造多晶硅太阳能电池已经取代直拉单晶硅成为最主要的光伏材料。但是铸造多晶硅太阳能电池的转换效率略低于直拉单晶硅太阳能电池,材料中的各种缺陷,如晶界、位错、微缺陷,和材料中的杂质碳和氧,以及工艺过程中玷污的过渡族金属被认为是电池转换效率较低的关键原因,因此关于铸造多晶硅中缺陷和杂质规律的研究,以及工艺中采用合适的吸杂,钝化工艺是进一步提高铸造多晶硅电池的关键。量产的单晶硅电池转换效率在17%左右,多晶硅电池转换效率在16%左右。而薄膜电池量产的转换效率为10%左右。
     
              上面为大家介绍了那么多,主要是从光学方面为大家介绍太阳能电池的工作原理,希望大家对这种高科技的电池有所了解和认识。
     

    德国西力蓄电池12v65ah型号参数




    德国西力蓄电池12v120ah包括安装


    西力铅酸蓄电池的失效模式及其修复方法
    现在电池按照容量来计算,还是以西力铅酸蓄电池为主。铅酸蓄电池以其容量大为上风,是其他电池目前还无法取代的。另外,其大电放逐电的特性,也决定了在启动电池方面的上风。但铅作为重金属,除了本钱外,它还存在着一定的毒性,对环境和人体都有不同程度的危害。所以延长铅蓄电池的寿命,不仅仅是可以降低运行本钱以外,还是环保的需要,也是拓展铅酸蓄电池的应用领域的一个重要题目。所以研究修复铅酸蓄电池,延长它寿命的题目,使铅酸蓄电池的销售量不仅仅不会减少,而且会增加,但是对环境的污染确可以不增加。 
    要了解西力铅酸蓄电池的修复,首先要明白铅酸蓄电池的失效模式。然后针对不同的失效模式谈修复方法。 
    一、 西力铅酸蓄电池的失效模式 
    由于极板的种类、制造条件、使用方法有差异,终极导致蓄电池失效的原因各异。回纳起来,铅酸蓄电池的失效有下述几种情况: 
    1、正极板的腐蚀变型 
    目前生产上使用的合金有3类:传统的铅锑合金,锑的含量在4%~7%质量分数;低锑或超低锑合金,锑的含量在2%质量分数或者低于1%质量分数,含有锡、铜、镉、硫等变型晶剂;铅钙系列,实际为铅—钙-锡-铝四元合金,钙的含量在0.06%~0.1%质量分数。上述合金铸成的正极板栅,在蓄电池充电过程中都会被氧化成硫酸铅和二氧化铅,最后导致丧失支撑活性物质的作用而使电池失效;或者由于二氧化铅腐蚀层的形成,使铅合金产生应力,使板栅长大变形,这种变形超过4%时将使极板整体遭到破坏,活性物质与板栅接触不良而脱落,或在汇流排处短路。 
    2、正极板活性物质脱落、软化。 
    除板栅长大引起活性物质脱落之外,随着充放电反复进行,二氧化铅颗粒之间的结合也松弛,软化,从板栅上脱落下来。板栅的制造、装配的松紧和充放电条件等一系列因素,都对正极板活性物质的软化、脱落有影响。 
    3、不可逆硫酸盐化 
    西力蓄电池过放电并且长期在放电状态下贮存时,其负极将形成一种粗大的、难以接受充电的硫酸铅结晶,此现象称为不可逆硫酸盐化。稍微的不可逆硫酸盐化,尚可用一些方法使它恢复,严重时,则电极失效,充不进电。 
    4、容量过早的损失 
    当低锑或铅钙为板栅合金时,在蓄电池使用初期(大约20个循环)出现容量忽然下降的现象,使电池失效。 
    5、锑在活性物质上的严重积累 
    正极板栅上的锑随着循环,部分地转移到负极板活性物质的表面上,由于H+在锑上还原比在铅上还原的超电势约低200mV,于是在锑积累时充电电压降低,大部分电流均用于水分解,电池不能正常充电因而失效。 
    对充电电压只有2.30V而失效的铅酸蓄电池负极活性物质的锑含量进行过化验,发现在负极活性物质的表面层,锑的含量达0.12%~0.19%质量分数。对某些电池,例如潜艇用蓄电池,对电池析氢良有一定的限制。曾对析氢超过标准的蓄电池负极活性物质化验,均匀锑的含量达到0.4%质量分数。 
    6、热失效 
    对于少维护电池,要求充电电压不超过单格2.4V。在实际使用中,例如在汽车上,调压装置可能失控,充电电压过高,从而充电电流过大,产生的热将使电池电解液温度升高,导致电池内阻下降;内阻的下降又加强了充电电流。电池的温升和电流过大互相加强,终极不可控制,使电池变形、开裂而失效。固然热失控不是铅酸蓄电池经常发生的失效模式,但也屡见不鲜。使用时应对充电电压过高、电池发热的现象予以留意。 

免责声明:新型建材网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系电话:0571-87774297。
0571-87774297